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1. INTRODUCTION

1.1 Correlation Statistics

In this article results are given on the large-sample behaviour
of normal order statistics. These are then used to demonstrate that
two correlation statistics for testing normality, introduced at about
the same time by Shapiro and Francia (1972) and by De Wet and Venter
(1972), have the same asymptotic distribution, given and tabulated
by De Wet and Venter (1972).

A correlation statistic for goodness-of-fit is one based on the
usual correlation coefficient for pairs of random variables.

The definition is extended to give a "correlation" between order
statistics X X cen f-xnn' of a random samﬁle of size n and

In < I)‘Zn -

a suitable set of constants t i=1,2,...,n. The correlation

in’
statistic rn(X,t) is then defined by

E (xin-x)(tin-t)
{i & -5

r (X,t) =

n 2

] —.2,1/2
E (t,,-t) }

in/n and

t= i tin/n. The set {Xin; i=1,2,...,n} will be referred to as an

where the sums are for i from 1 to n and where X = E X

order sample; it will also be referred to simply as X, or X', where

]
X' 1s the row vector (xln,XZn,...,xnn).

Suppose the test of fit is a test of the null hypothesis HO: X

comes from the distribution F(x;6), where 6 1is a vector of parameters.

In many test situations, such as a test for normality, the components of

® are location and scale parameters, o and R respectively. Suppose

'*._f.:_u
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then that the distribution is writtem F(x;a,8). Let {win, i=1,2,...,n}
- be the order statistics from a random sample of size n from F(x;0,1),
3 * *
) let E denote expectation, and let m E(win) (the m 's will
18
usually be known, or known with resonable accuracy). We now note that
J i .
xin can be written a+8win’. so 1f we assume that win is close to
*
d its expectation mo — which will generally be true — we have the
b
representation
X (1) X +Bm,
_ in ~ ¢"PRyy -
; In other words, the Xin's should be roughly linearly related to the
¢ *
z . LI L . N
' To investigate Bo with o and B unknown it is therefore
. natural to use a measure of how well the linear relation (1) holds. K
v * -
3 By choosing tin t° be m, we obtain an obvious test statistic :
) B
: *
r(X,m ). Another procedure for testing Ho was introduced by Shapiro
. and Wilk (1965). The test statistic is based on a comparison of the
s estimate B of the slope in (2), obtained by generalized least-squares,
v with the estimate of B obtained from the sample variance.
N .
S J
:: 1.2 Test for Normality .
- N
1: Consider the case where we wish to test whether the ordered sample
: X comes from a Normal distribution, with unknown mean u and unknown
N
R %
. variance 02, written N(u,dz). Then the wiﬂ will be order statistics
P
- from N(0,1); let these be called Zln < Z2n < eee < znn’ let

. - (]
, m, E(Zin)’ and let m be the column vector (mln’mZn""’mnn) .
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Let vij be the covariance between Zin and Zjn’ that is,
vij = E(Zin—min)(zjn-mjn), and let V be the matrix with entries
v,,, 1,j=1,...,n. We now have

ij

E(xin) = U+omin’

that is, a =y and B = 0. The generalized least-squares estimate

of B 1s then

8 = m'V-IX/(m'V-lm)

and the test statistics proposed by Shapiro and Wilk is
W= 82R4/(SZCZ)

where S2 = 3 (X1 4i)2, X =2IX, /n, and R2 and C2 are respectively
i n 4 in

the constants n'v in and m'V-lv-lm. The constants R and C° are

inserted to make 0 < W < 1 and clearly SZ/(n—l) is the sample variance
estimate of 82.

The use of this statistic is limited by the need to tabulate the
coefficient vector a' = m'V—l/C; this was done by Shapiro and Wilk
(1965), using both exact and approximate methods, for n < 50. For

larger values of n, Shapiro and Francia (1972) proposed the statistic

W= (@'x)2/{(m'm)2s?} ;

AWy
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: this can be seen to be equal to the correlation statistic ri(x,m), {
. that is, the simple correlation between X and m. The statistic

1
i- W' may be regarded as a large sample version of W because of the 3
o fact that, for large n, we may write (nonrigorously) V-lm ~ 2m

2 (Stephens, 1975); then W' =~ W for large n. W' is simpler than ]
, . 4

. )

N W but is still difficult to calculate because of the need to evaluate

- the m, also no rigorous asymptotic theory exists for W or W',

e Various authors have suggested other values for tin to be

-

o used in ri,(x,t); in particular, De Wet and Venter (1972) have

x4 - : !

\ proposed ty ™ Hin = ¢ 1{i/(n+1)} for the normal test where the |

L -1 -u?/2 1/2 .

< function ¢ “(¢) 1is defined as follows. Let ¢(u) = e /(2m)~" %, _

o

3: and let

90 .

.;' z !

(z) = J ¢(u)du ;

- - ]

1:. b

b -1 ]

then if y = &(z), z = ¢ “(y).

JV

f: In addition, De Wet and Venter (1972) establish the following

'j asymptotic result:

Y

-‘.‘ ® -

" 2n{1l-r_(X,H)}-a 2, ) (¥2-1)17t R

i: n n {=3 i

v,

AD

where X represents an ordered random sample from a normal distribution,

9.2.7. 48]

an is the constant

_"

e a = E[Zn{l-rn(X,H)}]
~
) 4




and the Yi are independent N(0,1) variates. They provide tables

for this asymptotic distribution, and also values of a .

It is well-known that min e Hin

De Wet and Venter imply that the asymptotic distribution of ri(x,m)

except for extreme values and

is the same as that of ri(X,H). Since W and W' have become well
established as tests of normality, and have good power properties, it
would be valuable to have rigorous asymptotic theory.

In this article we first give, in Theorem 1, approximations for
miﬁ, together with expressions for the error in the approximations.
These should have some independent interest, but in Theorem 2 they

are used to show that ri(x,m) does indeed have the same asymptotic

L d

P D ¥ it}

properties as rﬁ(X,H). The theorems are given in Section 2, and the

proofs appear in Sections 3 and 4.

1.3 Notation

In addition to the notation established above, it will be convenient

o
o
L
4
4
X

to list further definitions which will be required in the later sections.

A

From now on, X will refer to an ordered random sample from N(u,oz),

and vector Z, with components Z i=1,...,n, will be a similar

in’

i=1,...,n be defined by Ui = ¢(Zin);

§ o hg

vector from N(0,1l). Then let Ui’

i=1,...,n will then be a vector of

Pl S

vector U with components Ui’

order statistics from the uniform distribution with limits 0,1, written

o LT
[N

AT

U(0,1); the dropping of the second subscript n in component Ui is

el
-e

done to facilitate the printing of the algebraic calculations in Section

e
-t

3 and 4, and related quantities will likewise be simplified in notation.

Thus we define V, = -log(Ui); note that Vl > V2 > oeee > Vn are order

i

A AOOONNNN | - 440 4
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statistics from a standard exponential distribution. Let (<) be

the function defined by Z, = Q—l(Ui) - ¢-1{exp(—Vi)} = W(Vi),

in
i=1l,...,n.
Set Y(u) = y"(log u-l), and let s

i -8
define pg =e 1,

n .
4 " E(Vi) = szi (1/v); also

The end of a proof will be marked by ”.
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2. TWO THEOREMS

2.1 An Approximation for m

in®

Let zin’ m, V, and s for i=1,...,n, be as defined in

i i’
Section 1.3. We have

THEOREM 1: The mean m of 2Z is given by
in — "in

-1 o+l
m, =0 “{exp(-s))} +R, ,1<1<[5

where

R, | < ciHiog(m/1)} 32

and C 1is a constant independent of i and n.

REMARKS. (1) m, = -m

in 4n’ where j = n+l-i, so0 the theorem covers

-5
(2) For 1i far enough away from 1, e i, i/(n+l); the theorem

_1
t'.hen v ~ =
gives LI ¢ “{i/(n+1)} Hin

Blom (1958) introduced the idea of using exponential order statis-

above, a familiar approximation for

min.

tics, although he expanded 2 about log{i/(n+1)} and restricted his

in
attention to the case of 1 fixed as n > =,

(3) A crude expression for the error term when Hin is used to

approximate m was stated by David and Johnson (1956) but this requires

in
i/n to be bounded away from both O and 1. Lemma 6 below shows that
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wvhen ain is used to approximate m the error term is of order

1M 0g@/1 Y2, 1 2 1 < [@1)/2]. Thus 07N (exp(-s,)) provides

a better approximation, at least asymptotically.

2.2 The next theorem establishes the equivalence of the asymptotic

distributions for rn(z,m) and rn(z,u).

THEOREM 2: With rn(z,m) and rn(Z,H) defined as in Section 1.1,

n{rn(z,m) -r (Z,H)} +~0

in probability.

Since, under H., Z, = (X

0’ "in i
and rn(X,H) E rn(z,H). Thus Theorem 2 asserts that the Shapiro-Francia and

n—u)/o, it follows that rn(X,m) = rn(Z,m)

the De Wet-Venter correlation statistics have the same null asymptotic

distributions.

In the next two sections we give the proofs of Theorems 1 and 2.
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3. PROOF OF THEOREM 1

3.1 Throughout the section we suppose 1 < i < {(ntl)/2]. 1In this
paragraph the first steps in the proof are given. These steps mo-
tivate a series of lemmas which are required to complete the proof.

To begin, we expand Z n about sy = 23-1 1/v. This gives, using the

i

notation Z, = Q-l(e-vi) z Y(.,)
in i’?

z, = ¥(s)+ W,~s W' (s) + %(vi--si)zw"(ei)

Y2 g p¥p " s

where 61 lies between sy and Vi’ Taking expectations gives

WERERR ')

v ' 1 2un
= = — - »
We need to ev.aluate E(VI—SI) yr (e!). Recall that U, = exp(-V i), and

let gin"\ be the density of U we have

i;

g, = a v w0 cucr,

. 0 .
Also with 1 exp(-si), we define hin by:

pg[1+k(i-1)_l/zlog n] for i > 1+A210g n,

in

3

pg(l+k i-llog n) for 1 <4i< 1+Azlog n ,

with A = 10. Then




3
a
¥ 2 A

)

AN

1
2 "
I= E(Vi-si) Yy (61) = Io Y(u)du = Il+I2 .
w‘l -1 2 1]
ere y(u) = (log u -si) ¥ (ei)gin(u), and
- hin 1
(2) . Il = J Y(u)du and 12 = I Y(u)du .
0o hin

I must now be evaluated by evaluating I1 and IZ' To do this, a
series of lemmas is needed. A key result in the proof of Theorem 1

is Lemma 1.

LEMMA 1. The function Y(u) = ¥"(log u-l) is monotonic increasing

and positive for O < u < 0.5; also

T < (ot for o7l) <0 ;
(3)

Y(u) < 16 for ®l(u) <1 .
COROLLARY:

Hh

Y(u) < 32+[07 @) |?™! for ¢7l(u) < 1, that is, for 0 < u < &(1) = .84.

PROOF OF LEMMA 1. It 1is easily shown that Y(u) = A(u)B(u) where

Aw) = u(6@ T} and B(u) = 1+ud t)rele )y L.

We therefore prove that Y(u) is monotonic by proving that both

A(u) and B(u) are monotonic.

10
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Monotonicity of A(u). Let u = ¢(x), and let A(u) = Al(x). Since
du/dx > 0, A(u) 1is monotonic increasing if Ai(x) > 0. We have

Al(x) = d(x)/d(x); thus Ai(x) = C(x)/¢d(x), where C(x) = ¢(x)+xd(x).
It is easily shown that 1lim C(x) = 0; also C'(x) = &(x), using

the fact that ¢'(x) = -:;?:); thus C'(x) > 0, and C(x) 1is positive

and monotonic increasing for all x. Hence Ai(x) is positive, so A(u)

is monotonic increasing for all x.

Monotonicity of B(u). Let B(u) = Bl(x). Define the function

D(x) = (1+x%)®(x)+x¢(x). We have D'(x) = 2C(x) > 0; also lim D(x) =0,
so D(x) 1is positive and monotonic increasing for all x. x;;:

B (x) = T+x0(x) /6(x) = C(x)/b(x); then B, (x) = {C' ()+xC () }/o(x) =
{0 (x) +x6(x)}/0(x) = D(x)/9(x). Thus BJ(x) > O; hence B'(u)>0

and so B(u) 1is monotonically increasing for all «x.

It is well-known (see, for example, Renyi (1970, p. 164) that for

x < 0,
(4) 1-x"% < |x|®(x)/d(x) < 1 ;

thus, for x <0, A;(x) = ®(x)/¢9(x) <1/|x|, and B,(x) = 1+x¢(x)/¢(x)‘<x-2;
hence Y(u) = By (x)4,(x) < 1/|x|3 = |<1>-1(u)|_3 for u < 0.5, that is, for
x <0, For 0.5 <uc< ¢(1), that is, for 0 < x < 1, Y(u) is increasing,
so for the second inequality we evaluate Y(u) at u = ¢(1l); the value

is approximately 15.6. This completes the proof of Lemma 1.

11
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LEMMA 2: There is a K, independent of 1, such that for all n > K,

o 1
E&: h e, 1 <1< [S(atD)] .
h ;

PROOF OF LEMMA 2. We have

AT n-1 -1 n-2
' , Z \)1<r xldx-log(:—:i'-)< Z \)-1;
v=i -1 vei-]1

R S0

-8
e-l/n i-1 1] i .4

G <py=e g

N NG

=R

From the definition of hin the lemma follows. H

24y LEMMA 3: For a constant o (0 < <o < 1), there is a constant Y(co)

‘ such that for 0 < u < Y(co) <%’
N ~{-10g2mD) 12 < 071(w) < ~l-elogamaD}2

o PROOF OF LEMMA 3, By (4) we have

ron 0(2) 2] T1-z"2) < 0(2) < 0(2) |27} ;

R, St set v = -103(21ru2) and z = —(cov)l/z; then
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1/2}
1/2

¢{-(cqv)

u-IO{-(cov)llz} > {l-(cov)-l}

u(e v)

1-c
3 - (e MWD Ciegn/H

- h(u,co), say .

iy Now h(u,co) +® ag u + 0 so there is a constant Yo(co) such that

h(u.co) >1 for 0<ucx yo(co). Similarly

2 Loty < wlo(vt 2 /2

3 : <1, provided u < (2'"(!)-1/2 .

-1/24

Thus, if Y(co) = min{Yo(co),(Zﬂe) we have for 0 < u < Yo(co),

1 ot % M

u-1¢(-v1/2) <1 and u-1¢{—(cov)1/2} > 1. Lemma 3 follows at once. ||

ﬁ{‘u

LEMMA 4: With pg and hin defined as in Section 3.1, there is a K'

such that for n > K'

.

B, |2

s
. [}
—

- -1, 0
ek, )| > clovted], 1<1< (B

«Te

- AR

where C 1is independent of i and n.

PROOF OF LEMMA 4, By Lemma 3, when hin < Y(co) with g fixed

< 1) but otherwise arbitrary — for example, ¢y can be 0.5 -

(0 < <5

A} G000

13

AR Y2000

o
*,
%
)
2
2
4
:
2
I
‘
I.A
~,
L )
I%I
«
<
.:'
3
'N
4
r
:
A0
‘-
.
.ﬂ
:
.:
.
S
”
:
(A
s .
]

CYRP Y]
«¥a -
-------




. ’
h -1 2 \11/2
|® (hin)| > {-cylog(2mhy )}

: :
3 [cé/ 2-2108{p0(2*)1 7 (1og )VZTH2,1 < 1 < 1432108 N
P >

% ‘ 1%/2(-2103[pg{1+k(i-1)-1/2(log n)]'/z}/ﬁ-])llz, 1+)\210gn <1 < —2, -
3 Using (5) we obtain

¥ .
# ) 3 ]
’ célzlé'l(pg)lll- 1oL{(2§ )log—ﬂ 173 ]1/2, 1<ic< 1+)\2103n »
3 log{n(14+1“log n) ~(2m) } s
o -1

, TR

¢

v Lc(l)/zlds'l(pg)|(1-1ogz/1og4)1/2, 193 %10g n<i < n@32m~L/2

! and so -
- -
Cal .
y .

-1 -1, 0 -1/2

; 62, )] > ey 107 D] for 1< 4 < n(32m /2 and b < Y(ep) - ,
A K
" .
\ When n > K, by Lemma 2, hin < ¢(1), and by (5)
o :
) n(321r)—1/2 <1« [%(n+l)] =>%(321r)-]‘/2 < po <1 '
3
- =>hi > 1 .

7 o 8/2n
.

) For y(cqy) < hin < ¢(1), there is a Cys independent of i and n,
- such that <, < pg < -;- From these results taken together, there must .
E be a cs and Cyo both independent of i and n, such that with

.

: n > K, ’
' »:
- 14
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Y
el
] ey 107D | for (2m M <1< By,
<1 -
3 ’ o l(hin)l >
Ay
-1, 0 -1/2
3 c,l® (pi)l for 1<1< (32m " %n, Y(ep) <hy < 0(1) .
e
o
e
E.:: This completes the proof of Lemma 4. ||
<
N LEMMA 5: For 1<1i< [-;-(n+l)] and k a fixed positive integer,
b
e 1 - _
R J (1-u) kgm(u)du =o(n )
®(1)
t'
{:: where m 1s an arbitrary positive real number.
oS
N
PROOF OF LEMMA 5. Let
*J
(1
AN 1
N
‘.,.: fin(U) (i- 1)! u . uzO .
“ Lemma 3 of Stigler (1969, p. 774) gives the result that for any €>0,
N
_-. there is an M depending only on € such that gin(u) < Mf in(u) for
all u>0 and 1 < (1-€)n. Therefore
e
" 1 1
r, -k n(n-1)...(n-k+l)
s J (1-u) g, (u)du = 7= —y J 84 (n_1y (Wdu
s 8(1) in (n-1)...(n-i-k+l) o(1) i(n-k)
: 1
j{:.’ < 3kM J fi(n—k) (u)du for n > 4k
,:_‘_ (D(l)
1
10 < C expi- _;_ nd (1))} J jr(x_;%% wirlomuln=k=-1)/2,
' j $(1)
19
N 1 1
2 < C exp{- 3 nd(1)}2
",
‘.
,::3 - o™ as Pt < e{(n+1)logZ}/2 < e.l&(n+1)’ e-n@(l)/2<e-.42n .
'
'-)

'." .‘.‘.'
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This completes the proof of Lemma 5. ||
yo
“7 3.3 We continue with the proof of Theorem 1. We assume n > max(K,K').
L From (2) in Section 3.1 we have
N _[4n 1.2
3 I, = (log u_ -s,)¥"(8,)g, (u)du
Ny
S ey ¢ - - n -
3 ccilot D Pt} v
‘.$ " \)-1
et
2y ) 2

‘ using Lemmas 1 and 4, and the fact that E(V,-s ) = I] V'°. Also
i i1 i
A ‘1, = 1,.+I,, wh
& 2 = fa1Thpp Where
o
";‘e ¢(l) _1 2
= - "
121 Ih (log u si) Yy (ei)gin(u)du

;),s.j in
)c:j
{:f and
) 1 -1 2
AW I,, = I (log u “=-s,)"¥"(6,)g, (u)du .
g 22 8(1) i i’®in
S
N
i By Lemma 1, we can write
2%
E 5 (D)
e (6) I, 2 16si J gin(u)du R
' h
pal.l in
A
:.:::.':, using the fact that log u-l < s 1 throughout the range of the integral.
. %
088
1-‘ To evaluate the integral in (6) we use an argument given in Lemma 4 of
- i Stigler (1969). (The lemma as stated, however, has a condition missing.
L)
e
:'- Using the notation of Stigler (1969), let (i-1) < Azlog n, h(u)=1, k=0, ;
o) 1

16




...........................

153
7 '
0 and consider A',

: n

. L i-1 -(n-1)Y' j

o~ [ £ ,(w)du = ] e "((m-1)v")? /3!

> ' n 1=0 n

Al n

)

> ]

-(n-1)Y A (4 1/2
> e n.. A(i-1)log n) .

‘. -

L]

; -

p Suppose 1 = log(log n); the right hand side will not then be o(n )

for any m > 0. The condition bnllog n +® 1is also necessary. It

Y

'Y

& is to avoid this difficulty that we define hin over two regions

) >
.d for 1.) By (5), for 1i > 1+Azlog n, we have X
s <0 1/2

: hy o pi[1+A{1og(n)/(1-1)} .]

-

> (1-1) e-lln[1+k{log(n)/(1-1)}1/2]
v (n-1)
g
- *
5 > iiall [1+X{log(n)/(i-1)}1/2] = hin for n > K",

where K" is an appropriate constant.

For 1<1i< L+X210g(n) we have

) LAY

A

LY - -

A h, = p0(1+X31 l1og n) > .45k3(n-1) 1log n for n > K",

N in i

ﬁ where K" 1is an appropriate constant. ]
o

e 0

:’_«, using the fact that Py > (i--;-)/(n+%). Thus for i > 1 + Azlog n,

2,

f noting that A = 10 and fin(u) is decreasing for u > (i-1)/(n-1),

0

’ we find

:
Q)

N

S

VK
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r(l)

1
" Byp(wldu < M f x £y (w)du

in hin

1/2
< Ca[1+A{log(n)/ (1-1) }1/ 2112 (1-1)1og n}

- 0% ,

since (l+a/r)t < exp[a-{aZ/(IZr)}], 0<ac<r.

2

For 1< 1< 1+A"log n, we have, using v, = 0.45>\3(n-1)-llog n,

?(1) (1)
Ih Sin(U)du i M Jy fin(u)du
in in
p0
<M J £, ,(wdu
w
n
o i
f.M{exp(-.225A3log n)}21 I iﬁ%i%%é%l_ ui-le-u(n-l)/zdu

0

< M exp[-{.2252>-(1+A%)10g 2}10g n]

= O(n-z) .

Hence

1

- - 2
121 o(n "log n)

% -91
and, writing u for e 7,




“’:‘,-'

j 2 1 u*(l u*) * u*(l u*)Q_l(u*) 2

. I,,<s I —_-—- [(Q=u ) + -_ 1(1-u) " “g, (u)du
: 22 = 1 a1y olotw™) ole ™)} in

Y

0 * * -1 -1
since Py <u <u and hence (l-u ) = < (1-u) ~.

JJA}J.'

Note that (4) holds for x > 0 with &(x) replaced by 1-9(x).

o
3

, *
% We apply (4) with x = ¢(u ); this allows us to bound the term in ‘
g * * 1 * 1 R
> 122 involving u~ irrespective of whether u < 5 or u > 3 :
A Thus by Lemma 5, we have ;
’ .
-3 .
s I,<Csin" . :
-1 :
o ) Finally by equation (5) and Lemma 3, we obtain :'
¥ |
;' 1,0 | 1 1/2 1 a

67 | > [ )| > cliog@ I, 1< 1 < 3w .

b ~
This completes the proof of Theorem 1. || X
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4. PROOF OF THEOREM 2

4.1 Another series of lemmas is needed for the proof of Theorem 2.
Let P = i/(n+l) and for a vector a = (al,...,an)', define the

norm ||+[| by

o 1/2
lall = B2
1

LEMMA 6: The following inequalities hold:

|m, -H, | < <:1'1(1+um)'1 < c¢'17{10g(n/1) y 12, for 1 <1< [%(nﬂ)]

in

where ¢, ¢' are constants, independent of 1 and n.

PROOF OF LEMMA 6: By Theorem 1,

-1, 0, -1
Imin—ainl * |¢ (pi)-Q (pi)+Rin|
and .
b
0L e~72(p,) = [s,-Llog{ (w+1)1 ™} /6{07 (p )} + *‘
%[si_log{ (@) 17111 % (%)
where

log{ (n+1)/1} < 0" <8y .

20
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x|
A .
)
)
3 Now
: s, > log{(n+l)/1} >
»,
\ 3
. and :
2 ml - 1 _ _ _ 5
& s, = 5 Vi@« J x taxti ()7t :
3 =i+l 1 :
y so i
j\}"
. -1
¢ 0 < s, -log{(ntl)/1} <1 7 .
By (4) and the fact that Y"(0) 1is decreasing (see Lemma 1), we :
: have ' R
q 1 1 :
- < et = N
Imin Hml < el (I ) :
< c'i-']'{log(n/:l.)}‘-l/2 by Lemma 3.
s -
()
A This completes the proof of Lemma 6. ||
N LEMMA 7: The norm of vector m-H satisfies
p
\
L}
: |lm-H|| < c(log 2) /2, where c is a constant independent of n .
:
Zf PROOF OF LEMMA 7: From Lemma 6 we can write :
)

21
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X
)
v [(a+1)/2]
2 2
B ||m-H|| 2 L ("'m'nm)
\i
4 ((o+1)/2) _ - -1 [ -
-s; <ec' Z i 2{log(n/i.)} 1. c"n 1 f (log x) ldx
z ) i=1 2
2] ' < c(log n)-l ,
3
'b:
L ¥
where ¢, c¢', ¢" are constants independent of n. ||
A
: LEMMA 8: The norm of vector H satisfies
W
L s
' -5 log n < ||B)|2 <+l for n > 24 .
R % —
N
'3,'
2 -
o PROOF OF LEMMA 8: For the second inequality
> ,
4 ||n||2 < (n+l) I (071w 1%du = n+1 .
y (]
' Por the first inequality
¥
“
- fall® =2 § (o7 {1/ ()]
) 1
2 1/2
iy > 2(atl) (6”2 w)12du
T o~1(1/(a*1))
fs = (nt+l)(1-2 u“¢ (u)du]
-
- -1 -1 -1
. = (nt1)[1-2]¢7 {1/ (n+1) }d[®™ {1/ (rt1) }]=2(n+1) "]
4
o)
- . 22
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> n-3-2[8{1/ @D N 220107 1/ @ N 217 by (4)
> n-5 log n by Lemma 3 and the fact that |<I>-1{1/(n+1)}| > 1.73

for n > 24. ||

LEMMA 9: The normalised vectors for m and H satisfy

= - L <zt ||lo-u)f .

lmll =l

COROLLARY:

n
2
o <llall el - [ oy < lasll® lall /sl

PROOF OF LEMMA 9 AND COROLLARY: This is the same as that given by Sarkadi

(1975, p. 447) for a similar result. It depends on the fact that if
{ai} and {bi} are both increasing sequences of n real numbers,

then I ab, >0 if either I  a, =0 or Z‘;_ bi = 0, In particular

11’1 - 171
2 mH >0 .
1 i1 -
m H
”m" = ”H” Then in the sketch, with w representing the
?‘-.‘T‘w[g/. angle between m and H ,

m H -
n%n ”m - m” cos(w/2)

< "length of any line from top of ”—g—" to a point on m"

H -1
< gl - aple Yl
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= Also, geometrically, the fact that I, m/H, > 0 means that W < /2
and cos w > 2!’ . More formally,

>

- ly m H

& cos (w/2) -7”[]};" + n—in”

3 | 1 i o H 1/2

’ : -2 /2 1+ 1131

Y Tw]] ”H”

Al

A > 2-]'/2 . Lemma 9 follows at once || .

>

\ .

. LEMMA 10: The components of m and H satisfy

Y

.-. n

» |8, Img By < log(n) .

.b i’l

X PROOF OF LEMMA 10: By Lemma 6

o}

) n [ (n+1)/2] [(n+1)/2]
a -1 -1 -1

B LT L

o 1 1

A

N LEMMA 11: The following inequality holds:

. EIZin-d’-l(pg)l < efi log(n/i)}-l/z, 1<1i< [%(n+1)]
where c¢ 1is a constant independent of i and n.

PROOF OF LEMMA 1l: The formal proof of this Lemma follows the same

” steps as those used to establish Theorem 1, In this case we expand
o n only to the first term

-

-

o

o 24
-
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z, = @'1(pg) + (W= ¥ ()

where Y'(v) = -e.v/¢(¢-l(e-v)) and 61 is between V, and s,.

This yields

o101 o - .
Elz, -7 (o] = Elv,-s [[¥' (8] .
' -v -1, =-v \1-1
By Lemma 1, Y¥'(v) = -e '{¢p(d (e "))} is increasing in v and
is negative. Hence, |W'(9)| is decreasing as © 1increases

and by (4)

6t ™! for ¢ (u) < -1
l¥' (log u™H| <

4 for |¢—l(u)| <1,
Therefore
|¥' (log u 1| < 8{1+]67 ()|}, ¢™1(w) < 1, that is, for 0 < u < 8(1) .

Now

h

in
E{|v,-s, [[¥' (0]} = Jo + J

o(1) 1 -1
+ I | log u -sillw'(ei)|gin(u)du .

h (1)

in

These integrals can be evaluated exactly as before, yielding the upper

bound

25
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3

..{'

~
A

. c'E{|V, -s |}/{1+[¢" (pi)|}+0(n ),
¥ which in turn is bounded by
b
%
3 c{1 log(n/1)} /2 |
3

%,

¥ LEMMA 12: The norm of vector m satisfies
: 1 2 1
A 0 f.l—n- ”m|| §_cn- log n for all n,

By

where ¢ 1is a constant independent of n.

PROOF OF LEMMA 12:

AR -

2 2
E{lz, ID® < Elz] } .

a o a’fl‘J"

oy
d

So

AL

n
alml|? <ot ) B2} -1
i n
Also

)

- n
-1 2 -1 2 -1 2 -1
4 n ”m” =1 ||H” +n Hm—HH + 2n § Hin(min-ﬂin

> 1—6n-llog n-c(n log n)-l-c'n—llog n,

By Lemmas 7, 8, and 10. ||
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LEMMA 13: The norms of vectors m and H satisfy

22 | Jlafl ™2 =[5l 7Y < enlog n

where ¢ 1s a constant independent of n.

PROOF OF LEMMA 13: We have

N SR VRS PTID

| il -

n 2 n
g (min-Hin) + 2 § H

< cn—llzlog n by Lemmas 7, 8, 10 and 12. ||

4.2. We can now turn to the major proof.

PROOF OF THEOREM 2: We have

-1 % -1 -1
n{rn(z,m)—rn(Z,H)} = Sn : ; Zin[minMn mHinKn ]

where
n n n
2 -1 2 2 -1 2 2 -1 -
Mn n z my oo Kn n Z Hin’ Sn =n z (Zin-Z)
1 1l =1
and
_ 4 D
Z =nt oz, -
i=1 B

P
As 3:21 _8.8., 9 n{r_(Z,m)-r_(Z,H)} — 0 1if and only if
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-1 -1, P
n igl zin(min n ’HinKn ) —0.
Now
-1 -1 -1 -1
A 121 {z, -¢ (v )}{m Hi K~} + g {o~ (pi) -H, Hw, M “-H K}

<z u, m, -lall lul)
-Bn+Cn+Dn, say .

p
Using Markov's inequality Bn — 0 if Eanl + 0. By Lemmas 6, 11, 12

and 13, we have

-1 -1
E|B,| < ) elz, " D 1o m, -1, [+[u, | Ctr

)
i=1 n
[ (n+1)/2] _
ce T {1 1o/ 2 (esMiog (0/1) )7 2108 (/1P 2 0 10g
i=1

<c(logn)-1+0 as n+®,

By the proof of Lemma 6,

[(n+1l)/2] _ - - -
C <e¢ ¥ i l{log(n/i)} 1/2[c'i l{log(n/i)} 1/2
1l

1/2 -1

+ {log(n/i)} log n]

< c(log a7t
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Finally, by the corollary to Lemma 9, and Lemmas 7, 8, and 12,

Dn-*O as n-+ o,

This completes the proof of Theorem 2. ||
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